
V I R G I N I A V . W I L L I A M S

S T A N F O R D C S D E P T .

Hardness for Easy Problems

What is a hard computational problem?

k-SAT

Input: variables x1, … ,xn and a formula

F = C1 C2 … Cm so that each Ci is of the form

{y1 y2 … yk} and j, yj is either xt or xt for some t.

Output: A boolean assignment to {x1,…,xn} that satisfies all

the clauses, or NO if the formula is not satisfiable

Example: {x1 x2} {x2 x3 x4 x5} { x4 x2}

What is a hard computational problem?

k-SAT

Input: variables x1, … ,xn and a formula

F = C1 C2 … Cm so that each Ci is of the form

{y1 y2 … yk} and j, yj is either xt or xt for some t.

Output: A boolean assignment to {x1,…,xn} that satisfies all
the clauses, or NO if the formula is not satisfiable

Trivial algorithm: try all 2n assignments

Best known algorithm: O(2n-(cn/k)nd) time for const c,d

Why is k-SAT hard?

Theorem [Cook,Karp’72]:

k-SAT is NP-complete for all k≥3.

That is, if there is an algorithm that solves k-SAT instances

on n variables in poly(n) time, then all problems in NP
have poly(N) time solutions, and so P=NP.

k-SAT (and all other NP-complete problems) are
considered hard because fast algorithms for them
imply fast algs for many important problems.

Polytime solvable means easy?

In theoretical CS, polynomial time = efficient.

This is for a variety of reasons.
E.g. composing two efficient algorithms results in an

efficient algorithm. Also, model-independence.

However, noone would consider an O(n100) time
algorithm efficient in practice.

What about O(n3) or O(n2)?
If n is huge, then these can also be inefficient.

Hard poly-time solvable problems

There are many problems that have polynomial time
algorithms but no known really efficient algorithms.

Simple examples:

Many parametrizations of NP-hard problems:

E.g. find a clique on 99 nodes in an n-node graph.

Best running time is O(n79)…

But there are also some natural problems

in O(n2) time with no practical algorithms.

Sequence local alignment

A problem from computational biology:
Given two DNA strings

ATCGGGTTCCTTAAGGG
ATTGGTACCTTCAGG

How similar are they? What do they have in common?

Say we are given a score matrix that gives a score for each match

(AA,CC,TT,GG), mismatch, or each gap.

Find substring of largest score.
Solved daily on huge strings.

Sequence local alignment

A problem from computational biology:
Given two DNA strings

ATCGGGTTCCTTAAGGG
ATTGG_TACCTTCA_GG

How similar are they? What do they have in common?

Say we are given a score matrix that gives a score for each match

(AA,CC,TT,GG), mismatch, or each gap.

Find substring of largest score.
Solved daily on huge strings!!

Longest substring with don’t cares

Two strings, one over {0,1}, one over {0,1,*}

0001111110001

0**101*110110

Find the longest string that is a substring of both.

* can be interpreted as 0 or 1.

Sequence problems theory/practice

Fastest algorithm: O(n2) time on length n sequences

Sequence alignment is run on whole genome
sequences. Human genome: 3 x 10^9 base pairs.

A quadratic time algorithm is not fast!

Other hard polynomial time problems

Shortest path:

Network G, two fixed nodes s and t

What is the distance between s and t?

Fast solutions: Dijkstra’s algorithm

O(m+n log n) time on m-edge, n-node graph

What if G keeps changing: links are going down and up?

Do we have to recompute the path from scratch after
each change?

!

Other hard polynomial time problems

Dynamic s-t shortest path:

Given a graph and fixed vertices s and t,

support updates: insert/delete an edge,

answer queries “what is d(s,t)?”

Trivial solution: recompute d(s,t) after each update in ~m time.

The brute-force recomputation is the best known!!!

!

Graph centrality measures

In network analysis, we want to know

how important nodes are.

Various notions of “centrality” of a node v:

 Closeness centrality: 1 / (x d(v,x))
 Median: node of largest closeness centrality

 Betweenness centrality:

 x,y [#shortest xy paths through v]/[#shortest xy paths]

 Center of a graph: node c minimizing maxu d(c,u)

 All these measures can be computed in ~n3-o(1)
time, and no better algorithms are known.

Some polytime problems seem hard

 Sequence local alignment, dynamic st shortest paths,
graph centrality are all important problems with
easy, sometimes brute-force, polynomial solutions,
but not practical

 Best algorithm for each of them is longstanding, no
real improvements for decades

How do we explain this?

Hardness for easy problems

 Let’s say that a problem in P is nc-hard if an O(nc-ε)
time algorithm for it for ε >0, would imply surprising
improvements for many famous problems

 What are some famous hard problems?

(1) Is k-SAT in 1.9n time for all k?

Faster k-SAT?

The fastest algs for k-SAT run in O(2n-cn/k) time.

This is essentially 2n for large k!

Huge open problem to improve on this.

Strong Exponential Time Hypothesis

SETH [IPZ’01]: For every ε>0, there is a k such that k-
SAT is not in O((2- ε)n) time.

Widely believed. Many conditional results.

Hardness for easy problems

 Let’s say that a problem in P is nc-hard if an O(nc-ε)
time algorithm for it for ε >0, would imply surprising
improvements for many famous problems

 What are some famous hard problems?

(1) Is k-SAT in 1.9n time for all k?

(2) Is weighted k-clique in n0.9k time?

Faster weighted k-clique?

Weighted k-clique

Input: a graph with weights on edges

Output: k nodes forming a clique, maximizing the sum
of the edge weights between the nodes

Trivial algorithm: ~nk time.

This is essentially the best known!

Weighted Clique Conjecture: No O(n(1- ε)k) time
algorithm for weighted k-clique for any ε >0.

1

13

2

1

1

1 10

11

Hardness for easy problems

 Let’s say that a problem in P is nc-hard if an O(nc-ε)
time algorithm for it for ε >0, would imply surprising
improvements for many famous problems

 What are some famous hard problems?

(1) Is k-SAT in 1.9n time for all k?

(2) Is weighted k-clique in n0.9k time?

(3) Is 3SUM in n1.9 time?

Faster 3-SUM?

3-SUM
Input: n integers,
Output: Do 3 of the integers sum to 0?

Important problem in computational geometry.
Many problems are equivalent to it. For instance:

Given n points in the plane, are there 3 that are collinear?

Easy n2 time solution. Best alg: O(n2/log2 n)

3SUM conjecture:
There is no O(n2-ε) time alg for 3SUM for any ε >0.

Hardness for easy problems

 Let’s say that a problem in P is nc-hard if an O(nc-ε)
time algorithm for it for ε >0, would imply surprising
improvements for many famous problems

 What are some famous hard problems?

(1) Is k-SAT in 1.9n time for all k?

(2) Is weighted k-clique in n0.9k time?

(3) Is 3SUM in n1.9 time?

(4) Is APSP in n2.9 time?

Faster APSP?

All-pairs shortest paths (APSP):

Input: Graph on n nodes

Output: the distances between all pairs of vertices

O(n3) time algorithm by Floyd-Warshall from 1950s

Current best: Williams’14, n3/c log n/loglog n ~ n3-o(1)

APSP Conjecture:

No O(n3-ε) time alg for APSP for any ε >0.

Hardness for easy problems

 Let’s say that a problem in P is nc-hard if an O(nc-ε) time
algorithm for it for ε >0, would imply surprising
improvements for many famous problems

 What are some famous hard problems?

(1) Is k-SAT in 1.9n time for all k?

(2) Is weighted k-clique in n0.9k time?

(3) Is 3SUM in n1.9 time?

(4) Is APSP in n2.9 time?

(5) …

Example 1: Sequence alignment

Theorem [AVW’14]: If the Longest substring with
don’t cares on n length strings is in O(n1.9) time, then
k-SAT is in O(1.99n) time for all k.

So any nontrivial solution implies SETH is false!

Theorem [AVW’14] If Local alignment of sequences of
length n is in O(n1.9) time, then
 k-SAT is in O(1.99n) time

 3-SUM is in O(n1.99) time

 Weighted 4-clique is in O(n3.99) time

 00111
 1*111

ATTC
GTCC

Example 2: Dynamic st-shortest paths

Theorem [AV’14]: If updates can be supported in
O(m0.9) time, then APSP is in O(n2.99) time.

Any nontrivial distance update algorithm
would break the APSP conjecture!

!

Example 3: Graph Centrality Measures

Theorem [AGV’14]:

If the center or median of a graph, or the betweenness
centrality of a given vertex can be computed in
O(n2.9) time, then APSP is in O(n2.99) time.

In fact, all these centrality measures are
equivalent to APSP!

Any subcubic algorithm for one of them implies a
subcubic algorithm for all of them.

How do we prove such results?

 With NP-hardness we rely on poly time reductions:

Instance of problem Q instance of problem Q’

 For the type of results we want, this type of reduction
can’t work.

 E.g., we won’t be able to reduce APSP to a problem
that asks for a single number, e.g. median.

 Also, at least we want the runtime of the reduction to
be low… Need more refined reductions.

alg

 A is reducible to B if

 for every ε>0 ∃ δ>0, and an O(t(n)1-δ) time algorithm

 that transforms any A-instance of size n to

 B-instances of size n1,…,nk so that Σi ni
c-ε < t(n)1-δ.

Fine-grained reductions

28

 If B is in O(nc-ε) time,

 then A is in O(t(n)1-δ) time.

 Focus on exponents.

 P vs NP: poly time reductions.

 Here: more refined notion.

A theory of hardness for polynomial times.

A

t(n)1-δ

B B B B

Fine-grained reductions

 Such reductions can preserve exact running times.

 Example: dynamic st-shortest paths

APSP on n nodes

If update time is m1-ε for some ε>0, then runtime is

n8/3 + n7/3 x n2/3(1- ε) = n3-2 ε /3 + n8/3 = n3-δ.

Any nontrivial update time falsifies APSP conj!

n8/3 time

n7/3 instances of

dyn st-shortest path on

n2/3 edges, n7/3 updates

Discussion

 The reductions explain why it has been so hard to
obtain improvements.

 The current state of our algorithmic techniques
reaches the same roadblock on a lot of problems.

 It could be that they are all hard…

 Does this mean we should give up?

No! The reductions can also be viewed as

opportunities to look at various longstanding open
problems from new viewpoints.

Thank you!

virgi@cs.stanford.edu

