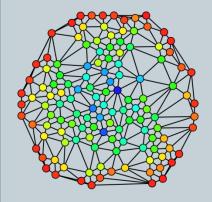
Hardness for Easy Problems

VIRGINIA V. WILLIAMS

STANFORD CS DEPT.



What is a hard computational problem?

k-SAT

Input: variables $x_1, ..., x_n$ and a formula $F = C_1 \wedge C_2 \wedge ... \wedge C_m$ so that each C_i is of the form $\{y_1 \lor y_2 \lor ... \lor y_k\}$ and $\forall j, y_j$ is either x_t or $\neg x_t$ for some t.

Output: A boolean assignment to $\{x_1,...,x_n\}$ that satisfies all the clauses, or NO if the formula is not satisfiable

Example: $\{\neg x_1 \lor x_2\} \land \{x_2 \lor \neg x_3 \lor x_4 \lor \neg x_5\} \land \{\neg x_4 \lor \neg x_2\}$

What is a hard computational problem?

k-SAT

Input: variables $x_1, ..., x_n$ and a formula $F = C_1 \wedge C_2 \wedge ... \wedge C_m$ so that each C_i is of the form $\{y_1 \lor y_2 \lor ... \lor y_k\}$ and $\forall j, y_j$ is either x_t or $\neg x_t$ for some t.

Output: A boolean assignment to $\{x_1,...,x_n\}$ that satisfies all the clauses, or NO if the formula is not satisfiable

Trivial algorithm: try all 2^n assignments Best known algorithm: $O(2^{n-(cn/k)}n^d)$ time for const c,d

Why is k-SAT hard?

Theorem [Cook,Karp'72]: k-SAT is **NP-complete** for all k≥3.

That is, if there is an algorithm that solves k-SAT instances on n variables in poly(n) time, then all problems in NP have poly(N) time solutions, and so **P=NP**.

k-SAT (and all other NP-complete problems) are considered *hard because* **fast algorithms for them imply fast algs for many important problems**.

Polytime solvable means easy?

In theoretical CS, **polynomial** time = efficient.

This is for a variety of reasons. E.g. composing two efficient algorithms results in an efficient algorithm. Also, model-independence.

However, noone would consider an $O(n^{100})$ time algorithm efficient in practice.

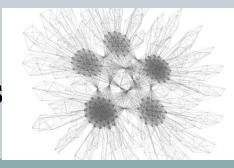
What about $O(n^3)$ or $O(n^2)$? If n is huge, then these can also be inefficient.

Hard poly-time solvable problems

There are many problems that have polynomial time algorithms but no known *really efficient* algorithms.

Simple examples:Many parametrizations of NP-hard problems:E.g. find a clique on 99 nodes in an n-node graph.Best running time is O(n⁷⁹)...

But there are also some natural problems in $O(n^2)$ time with no practical algorithms



Sequence local alignment

A problem from computational biology: Given two DNA strings

ATCGGGTTCCTTAAGGG ATTGGTACCTTCAGG

How similar are they? What do they have in common?

Sequence local alignment

A problem from computational biology: Given two DNA strings

ATCGGGTTCCTTAAGGG ATTGG_TACCTTCA_GG

How similar are they? What do they have in common?

Say we are given a score matrix that gives a score for each match (AA,CC,TT,GG), mismatch, or each gap.

Find substring of largest score. Solved daily on huge strings!!

Longest substring with don't cares

Two strings, one over $\{0,1\}$, one over $\{0,1,*\}$

0001111110001 0^{**}101^{*}110110

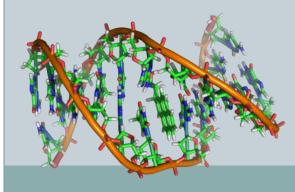
Find the longest string that is a substring of both. * can be interpreted as 0 or 1.

Sequence problems theory/practice

Fastest algorithm: $O(n^2)$ time on length n sequences

Sequence alignment is run on whole genome sequences. Human genome: 3 x 10⁹ base pairs.

A quadratic time algorithm is not fast!



Other hard polynomial time problems

Shortest path:

Network *G*, two fixed nodes *s* and *t* What is the *distance* between s and t?

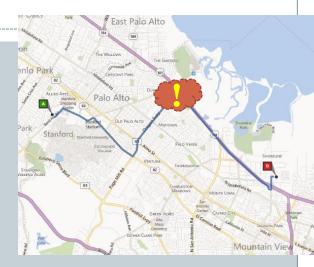
Fast solutions: Dijkstra's algorithm O(m+n log n) time on m-edge, n-node graph

What if G keeps changing: links are going down and up? Do we have to recompute the path *from scratch* after each change?

Other hard polynomial time problems

Dynamic s-t shortest path:

Given a graph and fixed vertices s and t, support updates: insert/delete an edge, answer queries "what is d(s,t)?"



Trivial solution: recompute d(s,t) after each update in ~m time.

The brute-force recomputation is the best known!!!

Graph centrality measures

In network analysis, we want to know how *important* nodes are.

Various notions of "centrality" of a node v:

- Closeness centrality: 1 / (Σ_x d(v,x))
 Median: node of largest closeness centrality
- Betweenness centrality:

 $\Sigma_{x,y}$ [#shortest xy paths through v]/[#shortest xy paths]

• **Center** of a graph: node c minimizing max_u d(c,u)

All these measures can be computed in ~n^{3-o(1)} time, and no better algorithms are known.

Some polytime problems seem hard

 Sequence local alignment, dynamic st shortest paths, graph centrality are all important problems with easy, sometimes brute-force, polynomial solutions, but not practical

• Best algorithm for each of them is longstanding, no real improvements for decades

How do we explain this?

Hardness for easy problems

 Let's say that a problem in P is n^c-hard if an O(n^{c-ε}) time algorithm for it for ε >0, would imply surprising improvements for many famous problems

• What are some **famous** hard problems?

(1) Is k-SAT in 1.9ⁿ time for all k?

Faster k-SAT?

The fastest algs for k-SAT run in O(2^{n-cn/k}) time. This is essentially 2ⁿ for large k! Huge open problem to improve on this.

Strong Exponential Time Hypothesis
SETH [IPZ'01]: For every ε>0, there is a k such that k-SAT is not in O((2-ε)ⁿ) time.

Widely believed. Many conditional results.

Hardness for easy problems

 Let's say that a problem in P is n^c-hard if an O(n^{c-ε}) time algorithm for it for ε >0, would imply surprising improvements for many famous problems

• What are some famous hard problems?

(1) Is k-SAT in 1.9ⁿ time for all k?
(2) Is weighted k-clique in n^{0.9k} time?

Faster weighted k-clique?

2

13

10

Weighted k-clique

Input: a graph with weights on edges Output: k nodes forming a clique, maximizing the sum of the edge weights between the nodes

Trivial algorithm: $\sim n^k$ time. This is essentially the best known! Weighted Clique Conjecture: No O($n^{(1-\epsilon)k}$) time algorithm for weighted k-clique for any $\epsilon > 0$.

Hardness for easy problems

 Let's say that a problem in P is n^c-hard if an O(n^{c-ε}) time algorithm for it for ε >0, would imply surprising improvements for many famous problems

• What are some famous hard problems?

Is k-SAT in 1.9ⁿ time for all k?
 Is weighted k-clique in n^{0.9k} time?
 Is 3SUM in n^{1.9} time?

Faster 3-SUM?

3-SUM Input: n integers, Output: Do 3 of the integers sum to o?

Important problem in computational geometry. Many problems are equivalent to it. For instance:

Given n points in the plane, are there 3 that are collinear?

Easy n² time solution. Best alg: $O(n^2/\log^2 n)$

3SUM conjecture: There is no $O(n^{2-\epsilon})$ time alg for 3SUM for any $\epsilon > 0$.

Hardness for easy problems

- Let's say that a problem in P is n^c-hard if an O(n^{c-ε}) time algorithm for it for ε >0, would imply surprising improvements for many famous problems
- What are some famous hard problems?
- Is k-SAT in 1.9ⁿ time for all k?
 Is weighted k-clique in n^{0.9k} time?
 Is 3SUM in n^{1.9} time?
 Is APSP in n^{2.9} time?

Faster APSP?

All-pairs shortest paths (APSP): Input: Graph on n nodes Output: the distances between all pairs of vertices

O(n³) time algorithm by Floyd-Warshall from 1950s *Current best*: Williams'14, $n^3/c^{\sqrt{\log n/\log\log n}} \sim n^{3-o(1)}$

APSP Conjecture: No $O(n^{3-\epsilon})$ time alg for APSP for any $\epsilon > 0$.

Hardness for easy problems

- Let's say that a problem in P is n^c-hard if an O(n^{c-ε}) time algorithm for it for ε >0, would imply surprising improvements for many famous problems
- What are some famous hard problems?
- (1) Is k-SAT in 1.9ⁿ time for all k?
- (2) Is weighted k-clique in n^{0.9k} time?
- (3) Is 3SUM in $n^{1.9}$ time?
- (4) Is APSP in $n^{2.9}$ time?
- (5) ...

ATTC GTCC 00111 1*111

Theorem [AVW'14]: If the *Longest substring with don't cares* on n length strings is in $O(n^{1.9})$ time, then k-SAT is in $O(1.99^n)$ time for all k.

So any nontrivial solution implies SETH is false!

Theorem [AVW'14] If *Local alignment* of sequences of length n is in O(n^{1.9}) time, then

- k-SAT is in O(1.99ⁿ) time
- **3-SUM** is in O(n^{1.99}) time
- Weighted 4-clique is in O(n^{3.99}) time

Example 2: Dynamic st-shortest paths

Theorem [AV'14]: If updates can be supported in O(m^{0.9}) time, then APSP is in O(n^{2.99}) time.

Any nontrivial distance update algorithm would break the APSP conjecture!

Example 3: Graph Centrality Measures

Theorem [AGV'14]:

If the center or median of a graph, or the betweenness centrality of a given vertex can be computed in $O(n^{2.9})$ time, then APSP is in $O(n^{2.99})$ time.

In fact, all these centrality measures are *equivalent* to APSP!

Any subcubic algorithm for one of them implies a subcubic algorithm for all of them.

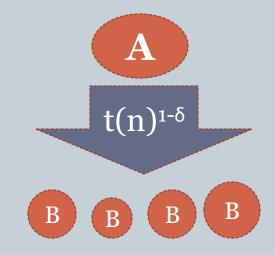
How do we prove such results?

• With NP-hardness we rely on poly time reductions: Instance of problem Q algo instance of problem Q'

- For the type of results we want, this type of reduction can't work.
 - E.g., we won't be able to reduce APSP to a problem that asks for a single number, e.g. median.
 - Also, at least we want the runtime of the reduction to be low... Need more refined reductions.

Fine-grained reductions

- A is reducible to B if for every ε>0 ∃ δ>0, and an O(t(n)^{1-δ}) time algorithm that transforms any A-instance of size n to B-instances of size n₁,...,n_k so that Σ_i n_i^{c-ε} < t(n)^{1-δ}.
- If B is in O(n^{c-ε}) time,
 then A is in O(t(n)^{1-δ}) time.
- Focus on exponents.
- **P** vs NP: poly time reductions.
- Here: more refined notion.



A theory of hardness for polynomial times

Fine-grained reductions

- Such reductions can preserve exact running times.
- Example: dynamic st-shortest paths

APSP on n nodes

 $n^{7/3}$ instances of dyn st-shortest path on $n^{2/3}$ edges, **n**^{7/3} **updates**

If update time is $\mathbf{m^{1-\epsilon}}$ for some $\epsilon > 0$, then runtime is $n^{8/3} + \mathbf{n^{7/3}} \ge \mathbf{n^{2/3(1-\epsilon)}} = \mathbf{n^{3-2} \epsilon^{/3}} + n^{8/3} = n^{3-\delta}$. Any nontrivial update time falsifies APSP conj!

Discussion

- The reductions explain why it has been so hard to obtain improvements.
- The current state of our algorithmic techniques reaches the same *roadblock* on a lot of problems.
- It could be that they are all hard...
- Does this mean we should give up?

NO! The reductions can also be viewed as *opportunities* to look at various longstanding open problems from new viewpoints.

Thank you!

virgi@cs.stanford.edu