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S T A N F O R D  C S  D E P T .  

Hardness for Easy Problems 



What is a hard computational problem? 

k-SAT  

Input: variables x1, … ,xn and a formula 

F = C1  C2  …  Cm so that each Ci is of the form 

{y1  y2  …  yk} and j,   yj is either xt or xt for some t. 

 

Output: A boolean assignment to {x1,…,xn} that satisfies all 

the clauses, or NO if the formula is not satisfiable 

Example: {x1  x2}  {x2   x3  x4   x5}  { x4   x2} 

 

 

 



What is a hard computational problem? 

k-SAT  

Input: variables x1, … ,xn and a formula 

F = C1  C2  …  Cm so that each Ci is of the form 

{y1  y2  …  yk} and j, yj is either xt or xt for some t. 

 

Output: A boolean assignment to {x1,…,xn} that satisfies all 
the clauses, or NO if the formula is not satisfiable 

 

Trivial algorithm: try all 2n assignments 

Best known algorithm: O(2n-(cn/k)nd) time for const c,d 

 

 

 



Why is k-SAT hard? 

Theorem [Cook,Karp’72]:  

k-SAT is NP-complete for all k≥3. 

 

That is, if there is an algorithm that solves k-SAT instances 

on n variables in poly(n) time, then all problems in NP 
have poly(N) time solutions, and so P=NP. 

 

k-SAT (and all other NP-complete problems) are 
considered hard because fast algorithms for them 
imply fast algs for many important problems. 



Polytime solvable means easy? 

In theoretical CS, polynomial time = efficient. 
 
This is for a variety of reasons.  
E.g. composing two efficient algorithms results in an 

efficient algorithm. Also, model-independence. 
 

However, noone would consider an O(n100) time 
algorithm efficient in practice. 

 

What about O(n3) or O(n2)? 
If n is huge, then these can also be inefficient. 



Hard poly-time solvable problems 

There are many problems that have polynomial time 
algorithms but no known really efficient algorithms. 

 

Simple examples: 

Many parametrizations of NP-hard problems: 

E.g. find a clique on 99 nodes in an n-node graph. 

Best running time is O(n79)… 

 

But there are also some natural problems 

in O(n2) time with no practical algorithms. 

 

 

 



Sequence local alignment 

A problem from computational biology: 
Given two DNA strings 
 

ATCGGGTTCCTTAAGGG 
ATTGGTACCTTCAGG 

 
How similar are they? What do they have in common? 
 
Say we are given a score matrix that gives a score for each match 

(AA,CC,TT,GG), mismatch, or each gap.  
 
Find substring of largest score.  
Solved daily on huge strings. 
 



Sequence local alignment 

A problem from computational biology: 
Given two DNA strings 
 

ATCGGGTTCCTTAAGGG 
ATTGG_TACCTTCA_GG 

 
How similar are they? What do they have in common? 
 
Say we are given a score matrix that gives a score for each match 

(AA,CC,TT,GG), mismatch, or each gap.  
 
Find substring of largest score.  
Solved daily on huge strings!! 
 



Longest substring with don’t cares 

Two strings, one over {0,1}, one over {0,1,*} 

 

0001111110001 

0**101*110110 
 

Find the longest string that is a substring of both. 

* can be interpreted as 0 or 1. 

 

 



Sequence problems theory/practice 

Fastest algorithm: O(n2) time on length n sequences 

 

Sequence alignment is run on whole genome 
sequences. Human genome: 3 x 10^9 base pairs. 

 

A quadratic time algorithm is not fast! 



Other hard polynomial time problems 

Shortest path: 

Network G, two fixed nodes s and t 

What is the distance between s and t? 
 

Fast solutions: Dijkstra’s algorithm 

O(m+n log n) time on m-edge, n-node graph 

 

What if G keeps changing: links are going down and up? 

Do we have to recompute the path from scratch after 
each change? 

 

 

! 



Other hard polynomial time problems 

Dynamic s-t shortest path: 

Given a graph and fixed vertices s and t,  

support updates: insert/delete an edge,  

answer queries “what is d(s,t)?” 

 

 

Trivial solution: recompute d(s,t) after each update in ~m time. 

 

The brute-force recomputation is the best known!!! 

 

 

! 



Graph centrality measures 

In network analysis, we want to know  

how important nodes are. 

Various notions of “centrality” of a node v: 

 Closeness centrality: 1 / (x d(v,x)) 
 Median: node of largest closeness centrality 

 Betweenness centrality:  

 x,y  [#shortest xy paths through v]/[#shortest xy paths] 

 Center of a graph: node c minimizing  maxu d(c,u) 

 All these measures can be computed in ~n3-o(1) 
time, and no better algorithms are known. 



Some polytime problems seem hard 

 Sequence local alignment, dynamic st shortest paths, 
graph centrality are all important problems with 
easy, sometimes brute-force, polynomial solutions, 
but not practical 

 

 Best algorithm for each of them is longstanding, no 
real improvements for decades 

 

How do we explain this? 



Hardness for easy problems 

 Let’s say that a problem in P is nc-hard if an O(nc-ε) 
time algorithm for it for ε >0, would imply surprising 
improvements for many famous problems 

 

 What are some famous hard problems? 

 

(1) Is k-SAT in 1.9n time for all k? 

 



Faster k-SAT? 

The fastest algs for k-SAT run in O(2n-cn/k) time. 

This is essentially 2n for large k! 

Huge open problem to improve on this. 

 

Strong Exponential Time Hypothesis  

SETH [IPZ’01]: For every ε>0, there is a k such that k-
SAT is not in O((2- ε)n) time. 

 

Widely believed. Many conditional results. 

 



Hardness for easy problems 

 Let’s say that a problem in P is nc-hard if an O(nc-ε) 
time algorithm for it for ε >0, would imply surprising 
improvements for many famous problems 

 

 What are some famous hard problems? 

 

(1) Is k-SAT in 1.9n time for all k? 

(2) Is weighted k-clique in n0.9k time? 

 



Faster weighted k-clique? 

Weighted k-clique 

Input: a graph with weights on edges  

Output: k nodes forming a clique, maximizing the sum 
of the edge weights between the nodes 

 

Trivial algorithm: ~nk time. 

This is essentially the best known! 

Weighted Clique Conjecture: No O(n(1- ε)k) time 
algorithm for weighted k-clique for any ε >0. 

1 

13 

2 

1 

1 

1 10 

11 



Hardness for easy problems 

 Let’s say that a problem in P is nc-hard if an O(nc-ε) 
time algorithm for it for ε >0, would imply surprising 
improvements for many famous problems 

 

 What are some famous hard problems? 

 

(1) Is k-SAT in 1.9n time for all k? 

(2) Is weighted k-clique in n0.9k time? 

(3) Is 3SUM in n1.9 time? 

 



Faster 3-SUM? 

3-SUM  
Input: n integers,  
Output: Do 3 of the integers sum to 0? 
 
Important problem in computational geometry.  
Many problems are equivalent to it. For instance: 
 
Given n points in the plane, are there 3 that are collinear?  
 
Easy n2 time solution. Best alg: O(n2/log2 n) 
 

3SUM conjecture:  
There is no O(n2-ε) time alg for 3SUM for any ε >0. 
 



Hardness for easy problems 

 Let’s say that a problem in P is nc-hard if an O(nc-ε) 
time algorithm for it for ε >0, would imply surprising 
improvements for many famous problems 

 

 What are some famous hard problems? 

 

(1) Is k-SAT in 1.9n time for all k? 

(2) Is weighted k-clique in n0.9k time? 

(3) Is 3SUM in n1.9 time? 

(4) Is APSP in n2.9 time? 

 



Faster APSP? 

All-pairs shortest paths (APSP): 

Input: Graph on n nodes 

Output: the distances between all pairs of vertices 

 

O(n3) time algorithm by Floyd-Warshall from 1950s 

Current best: Williams’14, n3/c log n/loglog n ~ n3-o(1) 

 

APSP Conjecture:  

No O(n3-ε) time alg for APSP for any ε >0. 



Hardness for easy problems 

 Let’s say that a problem in P is nc-hard if an O(nc-ε) time 
algorithm for it for ε >0, would imply surprising 
improvements for many famous problems 

 

 What are some famous hard problems? 

 

(1) Is k-SAT in 1.9n time for all k? 

(2) Is weighted k-clique in n0.9k time? 

(3) Is 3SUM in n1.9 time? 

(4) Is APSP in n2.9 time? 

(5) … 

 



Example 1: Sequence alignment 

Theorem [AVW’14]: If the Longest substring with 
don’t cares on n length strings is in O(n1.9) time, then 
k-SAT is in O(1.99n) time for all k. 

So any nontrivial solution implies SETH is false! 

 

Theorem [AVW’14] If Local alignment of sequences of 
length n is in O(n1.9) time, then 
 k-SAT is in O(1.99n) time 

 3-SUM is in O(n1.99) time 

 Weighted 4-clique is in O(n3.99) time 

 

 

 00111 
  1*111 

ATTC 
GTCC 



Example 2: Dynamic st-shortest paths 

Theorem [AV’14]: If updates can be supported in 
O(m0.9) time, then APSP is in O(n2.99) time. 

 

 

Any nontrivial distance update algorithm 
would break the APSP conjecture! 

! 



Example 3: Graph Centrality Measures 

 

Theorem [AGV’14]:  

If the center or median of a graph, or the betweenness 
centrality of a given vertex can be computed in 
O(n2.9) time, then APSP is in O(n2.99) time. 

 

In fact, all these centrality measures are 
equivalent to APSP!  

Any subcubic algorithm for one of them implies a 
subcubic algorithm for all of them. 

 

 



How do we prove such results? 

 With NP-hardness we rely on poly time reductions: 

Instance of problem Q               instance of problem Q’ 

 

 For the type of results we want, this type of reduction 
can’t work.  

 E.g., we won’t be able to reduce APSP to a problem 
that asks for a single number, e.g. median. 

 Also, at least we want the runtime of the reduction to 
be low… Need more refined reductions. 

 

 

 

alg 



 A is reducible to B if  

  for every ε>0 ∃ δ>0, and an O(t(n)1-δ) time algorithm  

  that transforms any A-instance of size n to                      

 B-instances of size n1,…,nk so that Σi ni
c-ε < t(n)1-δ. 

 

Fine-grained reductions 

28 

 If B is in O(nc-ε) time,  

 then A is in O(t(n)1-δ) time. 

 Focus on exponents. 

 P vs NP: poly time reductions. 

 Here: more refined notion. 
 

A theory of hardness for polynomial times. 
 

A 

t(n)1-δ 

B B B B 



Fine-grained reductions 

 Such reductions can preserve exact running times. 

 Example: dynamic st-shortest paths  

 

APSP on n nodes  

 

  

If update time is m1-ε for some ε>0, then runtime is 

n8/3 + n7/3 x n2/3(1- ε) = n3-2 ε /3 + n8/3 = n3-δ. 

Any nontrivial update time falsifies APSP conj! 

 

n8/3 time 

n7/3 instances of  

dyn st-shortest path on  

n2/3 edges, n7/3 updates 



Discussion 

 The reductions explain why it has been so hard to 
obtain improvements. 

 The current state of our algorithmic techniques 
reaches the same roadblock on a lot of problems. 

 It could be that they are all hard… 

 Does this mean we should give up? 

No! The reductions can also be viewed as 

opportunities to look at various longstanding open 
problems from new viewpoints. 

 

 



 

Thank you! 

virgi@cs.stanford.edu 


